with regard to disclosure of serious or frequent risks which was tailored in the majority if the patient underwent transbronchial biopsy (figure 1). Particular risks were represented in terms of an exact percentage in 15 and in 6 by means of words (eg, occasional, common). Fifteen respondents tailored their consent in the presence of significant co-morbidity. Risk of death was communicated always by 3 respondents, often by 1, sometimes by 15 and never by 14.

The current British Thoracic Society guidance on consent for bronchoscopy from 2001 reflected the legal and ethical standard at that time where doctors were “entitled to withhold information” if it was thought to be detrimental to patient health and were under “no duty ... to point out remote risks”. The ethicolegal landscape has been changed dramatically by rulings such as Chester v Afshar, and this is reflected in the recent General Medical Council publication on consent, which states that a doctor “must tell patients if an investigation or treatment might result in a serious adverse outcome, even if the likelihood is very small”.

We feel that all patients with capacity undergoing bronchoscopy should be offered detailed risk disclosure with documentation of the decision in those patients wishing to “opt out”, and that this risk information should become standardised and individually tailored where possible.

Acknowledgements The authors acknowledge the respiratory physicians who responded to the survey on consenting practice.

C Echevarria, G A Anwar, S Parker, R M Rutherford
Northumbria Healthcare Trust, Tyne and Wear, UK

Correspondence to Dr R M Rutherford, Northumbria Healthcare Trust, Tyne and Wear, UK; bobrutherford87@yahoo.com

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Accepted 9 July 2009

REFERENCES

Authors’ reply

We are grateful to Dr Echevarria and colleagues for their interest in and comments on our study. We accept their criticism that the provision of information sheets only on the day of bronchoscopy and the inclusion for all patients of data on complications relevant only to those likely to undergo transbronchial biopsy may have affected our results. However, apart from the constraints imposed by the artificial environment of a randomised trial, we suspect that these practices are not far removed from what happens in real life. While the verbal discussion of the procedure should always put risks in a personal context, it will be difficult—given the workload involved in developing and agreeing even a single information sheet for a procedure—for any individual centre to develop multiple personally tailored information sheets.

We agree that rulings such as Chester v Afshar have changed the legal requirements for doctors so that even very small risks of serious outcomes such as death need to be discussed.1 The authors’ survey of consent practices for bronchoscopy among respiratory physicians in the north-east of England confirms for bronchoscopy the same startling variations found in the amount of risk disclosure by doctors for other procedures. Standardisation of risk information, even allowing for individual tailoring, would eliminate much of this variation. However, there is an inherent tension in the fact that informed consent does “double duty” as protection both for doctors and for patients. It is worth noting O’Neill’s criticism that, while greater emphasis on patient autonomy in medicine is supposed to make doctors more responsible to patients’ needs and wishes, it might have the opposite effect of encouraging a culture of back covering.2 Thus, a legalistic approach to consent may lead to the doctor passing too much information and responsibility onto the patient, “muttering ‘caveat emptor’ under his breath”, as Cowley put it.3

S T O’Keeffe, J J Gilmathin
Merlin Park University Hospital, Galway, Ireland

Correspondence to Dr S T O’Keeffe, Merlin Park University Hospital, Galway, Ireland; sokanc@iolfree.ie

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 10 July 2009
Thorax 2010; 65:278. doi:10.1136/thx.2009.123414

REFERENCES

Upper and lower airway microbiology in cystic fibrosis

I thank Mainz et al for their recent paper on concordance of upper airway with lower airway microbiology in cystic fibrosis (CF) using nasal lavage.1 However, their claim that their evidence supports a role for the upper airway in the “acquisition and persistence of opportunistic bacteria” in the lower airway does not stand up to scrutiny. Their work is of great interest and addresses an important and often neglected area of CF research: just how do bacteria gain access to the lower airways? They elegantly demonstrate the close association between the bacteria of the upper and lower airways. It is, however, a cross-sectional study and provides no information as to the direction of transfer of bacteria between the upper and lower airways. In subjects with a lower respiratory tract infection, as is quintessentially the case in CF, it is both general knowledge and scientifically well established that bacteria are expectorated in both sputum and fomites. Such knowledge is the basis of the cough swab or cough plate often used for lower airway microbiological surveillance in the paediatric CF population.2 It would therefore be natural to assume in any patient with a “colonised” lower airway that fomites from the lower airway will lodge within the nasopharynx. This would result in coincident upper and lower airway bacterial strains, as has been found in this study. However, the evidence provided here does not demonstrate that the upper airway is a source of bacterial seeding to the lower airway, merely that genetically identical strains are found in both compartments and the walls between these compartments are flimsy at best. In order to ascertain the direction of bacterial travel between these two compartments, it would be necessary to undertake a longitudinal study. If such a study were to demonstrate early bacterial travel from the upper to the lower airways, it would open up new avenues of potential therapies for this devastating disease.

T Daniels

Correspondence to Dr T Daniels, Adult CF Unit, Southampton General Hospital, Hampshire SO16 6YD, UK; thomaswdw@hotmail.com

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 2 August 2009
Thorax 2010; 65:278. doi:10.1136/thx.2009.122333

REFERENCES

Authors’ reply

We thank Dr Daniels for his comments on our paper and agree that “a cross-sectional study ... provides no information as to the