What can adiponectin say about left ventricular function?

Flora Sam and Kenneth Walsh

Heart 2010 96: 331-332 originally published online November 23, 2009
doi: 10.1136/hrt.2009.178590

Updated information and services can be found at:
http://heart.bmj.com/content/96/5/331.full.html

These include:

References
This article cites 25 articles, 18 of which can be accessed free at:
http://heart.bmj.com/content/96/5/331.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To order reprints of this article go to:
http://heart.bmj.com/cgi/reprintform

To subscribe to *Heart* go to:
http://heart.bmj.com/subscriptions
What can adiponectin say about left ventricular function?

Flora Sam, Kenneth Walsh

Adiponectin is an adipocyte-derived cytokine that is abundantly present in human plasma. Adiponectin levels are highest in lean subjects, but levels decline as body mass increases. Work in experimental models has shown that adiponectin mediates beneficial actions in cardiovascular and metabolic-associated diseases. For example, in mouse models, adiponectin modulates hypertrophic signals in the heart and exhibits direct anti-hypertrophic properties; in addition to improving vascular function and pathological remodelling. Despite the agreement and consistency of experimental studies on adiponectin, a number of clinical findings have questioned the utility of this adipokine as a biomarker for human diseases. On one hand, depressed adiponectin levels have been associated with greater cardiovascular risk and inflammation since hyperadiponectinaemia occurs in coronary artery disease, hypertension and insulin resistance. On the other hand, high adiponectin levels are present in chronic inflammatory and autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes and inflammatory bowel disease independently of adiposity. In addition, chronic systolic heart failure is associated with elevated adiponectin levels. Now, Unno and colleagues report that adiponectin levels are elevated in non-obstructive hypertrophic cardiomyopathy (HCM) with diastolic dysfunction (see page 357).

Hypertrophic cardiomyopathy (HCM), a genetic disease of the cardiac sarcomeres, is caused by mutations in one of the many genes that encode components of the contractile apparatus of the heart. HCM has an autosomal dominant pattern of inheritance and is characterised by left ventricular hypertrophy (LVH), with variable clinical, morphological and haemodynamic phenotypes. In this study by Unno et al, the patients with HCM had no left ventricular (LV) outflow tract obstruction, which probably explains the paucity of cardiac symptoms such as dyspnoea and angina (New York heart Association functional class I/II or mild chest pain). However, the left ventricle is often not compliant in HCM resulting in diminished cardiac symptoms such as dyspnoea and angina (New York heart Association functional class I/II or mild chest pain). However, the left ventricle is often not compliant in HCM resulting in diminished LV relaxation. However, because LV pressure half-time (T1/2) is not a definitive measure of impaired diastolic function, additional measures of diastolic dysfunction such as measures of mitral Doppler, tissue Doppler and determinants of E/e’ by echocardiography would strengthen the case for diastolic dysfunction in the patient population studied by Unno et al.

It should be noted that adiponectin levels are increased in other diseases. For example, hyperadiponectinaemia occurs in renal failure and is associated with increased mortality. The increase is thought to be due to impaired kidney clearance since renal transplantation lowers adiponectin levels. With regard to heart failure, the reason for the rise in adiponectin levels is not known but a number of hypotheses are possible. First, it is conceivable that the upregulation of adiponectin levels may be a compensatory response to the stress of heart failure, similar to the mechanism described for B-type natriuretic peptide (BNP) secretion. The molecular mechanisms underlying such a process are unknown; however, BNP levels correlate with adiponectin levels in human heart failure, and it has been reported that BNP directly stimulates human adipocytes to release adiponectin via a cGMP-dependent pathway.

Another possible explanation for the rise in adiponectin levels in cardiac disease is the development of ‘adiponectin resistance’. Adiponectin resistance has been described by a small number of studies examining human tissue and animal models, but again the mechanistic details have not been defined. Increased adiponectin levels may reflect dysfunction at the level of adiponectin receptors with a resulting increase in adiponectin secretion as a compensatory response as may occur in systolic heart failure. In the study by Unno et al, non-obstructive HCM with increased T1/2 was associated with a decrease in the expression of AdipoR1, a putative adiponectin receptor. Thus the elevated adiponectin levels might be a reflection of a compensatory response to decreased adiponectin signalling in target tissues.

Unno et al correlated adiponectin levels with haemodynamic and physiological measures of HCM. However, it remains unclear if adiponectin serves as a useful marker in HCM for identifying patients at risk of developing heart failure symptoms or angina. The study of Unno et al should stimulate further activity in this area. Because this study does not inform us about the relationship between LV dysfunction and adiponectin, future investigations should examine whether adiponectin levels correlate with classic measures of diastolic function such as rate and extent of LV filling, E and A waves on Doppler echocardiography, passive elastic stiffness properties as well as the rate of isovolumic relaxation. Furthermore, it would be important to consider if adiponectin levels may serve as a marker to identify patients.
REFERENCES

Competing interests None.

Provenance and peer review Commissioned; not externally peer reviewed.

Published Online First 23 November 2009

Heart 2010;96:331—332. doi:10.1136/hrt.2009.178590