The authors' reply
Nicola C Edwards, Helen C Routledge and Richard Paul Steeds

Heart 2010 96: 310
doi: 10.1136/hrt.2009.183681

Updated information and services can be found at:
http://heart.bmj.com/content/96/4/310.3.full.html

These include:

References
This article cites 7 articles, 5 of which can be accessed free at:
http://heart.bmj.com/content/96/4/310.3.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To order reprints of this article go to:
http://heart.bmj.com/cgi/reprintform

To subscribe to Heart go to:
http://heart.bmj.com/subscriptions
Measuring waist circumference: do not “throw the baby out with the bath water”!

The authors’ reply: Although the objective of my review paper was not to address the relevance of measuring waist circumference in children, I certainly agree with de Groot et al that the proposal to define childhood obesity as the 90th percentile of waist circumference has important limitations. However, in adults, an elevated waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes Relat Metab Disord 2000;24:1423–8.

J-P Després
Quebec Heart and Lung Institute Université Laval, Quebec City, Canada
Correspondence to Dr Jean-Pierre Després, Institut universitaire de cardiologie et de pneumologie de Quebec (Hôpital Laval), Research Centre, Pavillon Marguerite-D’Youville, 4th floor, 2725 Chemin Sainte-Foy, Quebec, QC, Canada 4G5, jean-pierre.despres@cituxpq.ulaval.ca

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Heart 2010;96:310. doi:10.1136/hrt.2009.183673

REFERENCES

The authors’ reply: We thank Bohl et al for their additional comments relating to the timing of T2-weighted imaging to detect acute ischemia. They reference their own experimental data that has been instrumental in the development of T2-weighted cardiovascular magnetic resonance imaging (CMRI) and emphasise the methodological differences that might explain the failure to detect myocardial oedema within the first 24 h. This paper was important not only in raising the issue of the time window in which the earliest appearances of myocardial oedema occur but also for the long-term 180-day follow-up period assessing the duration of the changes detectable on T2-weighted CMRI. Recent data from animal models and clinical human studies have provided more information regarding the ‘time window’ in which the earliest appearances of myocardial oedema occur. The recent paper by Abdel-Aty et al, which became available during revision of our study, provided more information regarding the ‘time window’ in which the earliest appearances of myocardial oedema occur.


T2-weighted magnetic resonance imaging to assess myocardial oedema

To the editor: We read with interest the comprehensive review article on T2-weighted cardiovascular magnetic resonance imaging (CMRI) by Edwards et al. We wish to make one comment for the sake of clarity regarding the term ‘ischaemia’. Although the objective of our study was to detect acute ischaemia. They reference the early reports employing T2-weighted CMRI to assess myocardial oedema but also for the long-term 180-day follow-up period assessing the duration of the changes detectable on T2-weighted CMRI. Recent data from animal models and clinical human studies have provided more information regarding the ‘time window’ in which the earliest appearances of myocardial oedema occur. The recent paper by Abdel-Aty et al, which became available during revision of our study, provided more information regarding the ‘time window’ in which the earliest appearances of myocardial oedema occur.
manuscript, suggests that T2-weighted imaging has the real potential for the early detection of oedema, within a time window when intervention has the greatest efficacy. There remains the technical challenge of ensuring that these experimental data in dogs can be transferred with equal reproducibility to humans in the early stages of an acute coronary syndrome. The large number of papers becoming available since writing our review emphasise the rapidly evolving field of T2-weighted CMRI and its applicability to many clinical situations.5,7

Nicola C Edwards,1 Helen C Routledge,2 Richard Paul Steeds1

1Queen Elizabeth Hospital, Bournville, Birmingham, UK; 2Department of Cardiovascular Medicine, Worcester Royal Infirmary, University Hospital Birmingham, Queen Elizabeth, Birmingham, UK

Correspondence to Dr Richard Paul Steeds, Queen Elizabeth Hospital, 29 Linden Road, Bournville, Birmingham B30 1JT, UK; rick.steeds@uhb.nhs.uk

Contributors All authors have contributed equally to the submission.

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Heart 2010;96:310—311. doi:10.1136/hrt.2009.183681

REFERENCES