Waist circumference: a waste of time?

P C E de Groot, D H Thijssen and M T E Hopman

Heart 2010 96: 309
doi: 10.1136/hrt.2009.183632

Updated information and services can be found at:
http://heart.bmj.com/content/96/4/309.1.full.html

References

This article cites 5 articles, 4 of which can be accessed free at:
http://heart.bmj.com/content/96/4/309.1.full.html#ref-list-1

Article cited in:
http://heart.bmj.com/content/96/4/309.1.full.html#related-urls

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To order reprints of this article go to:
http://heart.bmj.com/cgi/reprintform

To subscribe to *Heart* go to:
http://heart.bmj.com/subscriptions
Waist circumference: a waste of time? Response to Dr Paul Poirier: Cardiologists and abdominal obesity: lost in translation?

To the editor: With great interest, we read the articles of a recent issue of Heart addressing the important role of abdominal obesity in relation to cardiovascular risk and the metabolic syndrome.1,2 The metabolic syndrome, considered the ailment of the 20th century, emerges from clustering and interactions of multiple cardiovascular risk factors affecting a large proportion of the population. The presence of the metabolic syndrome in children is of particular interest given the rapid and alarming increase in prevalence in the past decade. Classification of body weight in children is challenging because body proportions vary considerably during growth. A uniform definition of the metabolic syndrome in the paediatric population would be relevant for early diagnosis and treatment and for scientific and public health purposes. Current metabolic syndrome criteria for children as recommended by the International Diabetes Federation3 define childhood obesity as the 90th percentile of waist circumference, which has important and unacceptable drawbacks.

First, prevalence of obesity among children has increased threefold in the past 30 years.4 Using the 90th percentile of waist circumference to define obesity raises the problem of a moving cutoff point to define obesity, which will potentially mask the impact of the problem. For example, a child who was defined obese 5 years ago may not reach the cutoff value for obesity today but instead falls within the normal range, which could lead to an incorrect conclusion that obesity prevalence is declining. In addition, the prevalence of being overweight and obese differs markedly among children from different countries and populations.

A previously published systemic review in school-aged youth from 34 (mostly European) countries illustrates a large variation in overweight and obesity prevalence rates, that is, the two countries with the highest prevalence of overweight and obesity were Malta and the USA (25.4% and 7.9%, 25.1% and 6.8%, respectively), whereas the lowest prevalence rates were found in Lithuania (5.1% and 0.4%) and Latvia (5.9% and 0.5%).5

These numbers clearly demonstrate that using the 90th percentile of waist circumference to define childhood obesity makes international comparison between populations and studies extremely difficult.

As body composition and proportions change during childhood, we are aware of the highly challenging task, we are about to define childhood obesity. However, we strongly believe that efforts should be made to obtain sex- and age-dependent absolute cutoff points to define the degree of obesity in the paediatric population in the future.

P C E de Groot, D H Thijssen, M T E Hopman
Correspondence to Dick Thijssen, Department of Physiology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands; D.Thijssen@lysiol.umcn.nl

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Heart 2010;96:309. doi:10.1136/hrt.2009.183632

REFERENCES

Response from Dr Paul Poirier to P De Groot’s: Cardiologists and abdominal obesity: lost in translation?

The author’s reply: In response to the comments on my recent editorial, I would like to emphasise that I agree with the clarification of de Groot et al.1 Indeed, in youths between 2 and 18 years of age, obesity is defined as a body mass index (BMI) of 95th percentile or BMI of ≥30 kg/m², whichever is lower. For children <2 years of age, BMI normative values are not available.2 Data indicate that extreme obesity in children is increasing in prevalence, and these children are at high risk for multiple cardiovascular disease (CVD) risk factors. A proposed definition of severe childhood obesity is 99th percentile BMI, which corresponds to a BMI of approximately 30–52 kg/m² for youths 10–12 years of age and 34 kg/m² for youths 14–16 years of age.2 Thus, the improvement in risk factor recognition and management that developed through the years in modern cardiology may be counteracted by the rising incidence of obesity. Indeed, it was suggested that the life-shortening effect of obesity could increase as the obese who are now at younger ages carry their elevated risk of death into middle and older ages.3 There is no debate relative to the issue of assessing excess adiposity in children.

As pointed out by de Groot et al, waist circumference (WC) measurements are not recommended routinely in children because reference values for children that identify risk over and above the risk from BMI category are not available.2 Nevertheless, clinicians may add WC to the tools they use to assess risk. If they do, clinicians should use as high, age-specific percentile cut-off point, such as 90th or 95th percentile, to evaluate risk.4 There are numerous indexes to evaluate obesity (BMI, WC, waist-to-hip ratio) or body fat content (bioelectrical impedance, hydrostatic weighing, dual energy x-ray absorptiometry, air displacement plethysmography). Accurate diagnosis of obesity may entail more refined assessment of body fat composition/distribution. Through the years, researches have helped refining indexes associated with CVD. For example, total cholesterol has been replaced by low- and high-density lipoprotein cholesterol to better evaluate the patient’s risk of CVD. With obesity occurring at younger ages, the children and young adults of today will carry and express obesity-related risks for more of their lifetime than previous generations. Without a doubt, obesity is a risk factor for CVD. Today, we are no longer using total weight to appreciate the presence of obesity.5 Today’s paediatric practice has changed tremendously. Paediatric endocrinologists are no longer treating only type 1 diabetes but are faced with a new challenge; type 2 diabetes-associated obesity at younger age. It will probably be the same with paediatric cardiologists who will have to adapt their practice, which used to be mostly structural cardiac abnormalities and arrhythmias to new comers such as cardiomyopathy due to HIV or management of risk factor-induced obesity. Although BMI has been useful in epidemiological study to assess the presence of obesity, it fails to differentiate between differences in body compositions. BMI does not characterise excess centrally distributed obesity, which is more consistently associated with adverse effects on metabolism, dyslipidaemia and insulin resistance. One index that may be of use in children is waist-to-height ratio.6 However, further researches are needed to clarify the role of this index in clinical practice. While waiting for such studies to be conducted, I do not feel that measuring WC is a waste of time.

P Poirier
Correspondence to Dr Paul Poirier, Queen’s Health Institute, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5; Paul.Poirier@chiriqup.uquebec.ca

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

REFERENCES